Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
Renewable energy sources are natural energy forms that are replenished on a human timescale and are seen as more sustainable and eco-friendlier compared to fossil fuels. These resources are crucial for lowering carbon emissions and addressing climate change, ensuring a cleaner and more sustainable energy future. Choosing renewable energy sources in an uncertain environment presents a complex decision-making challenge, as it involves assessing multiple factors under conditions of uncertainty, such as fluctuating energy prices, shifting government policies, varying resource availability (e.g., solar, wind, hydro), and technological advancements. Fuzzy multi-criteria decision-making approaches offer a structured way to evaluate different options based on several criteria while addressing these uncertainties. The region in question experiences a combination of sunny, windy, and rainy days throughout the year, but the availability of solar, wind, and hydro resources is subject to significant uncertainty. Solar energy varies by season and location, and weather patterns are hard to predict. While government incentives exist, they may change overtime. Wind resources can be inconsistent, with the region’s average annual wind speed supporting wind power, but occasional periods of low wind intensity. Hydropower, though valuable, is affected by uncertain factors such as water availability, climate change, and regulatory or environmental considerations. In this article, the fuzzy AHP method with fuzzy Z-numbers is employed to assess renewable energy sources such as solar, wind, hydro based on criteria like economic factors, environmental impact, and technical feasibility.
Keywords:
References
[1] Aliev R. A., Huseynov O. H., Aliyeva K. R.: Toward eigenvalues and eigenvectors of matrices of z-numbers. Advances in Intelligent Systems and Computing 1095, 2020, 309–317 [http://doi.org/10.1007/978-3-030-35249-3_39]. DOI: https://doi.org/10.1007/978-3-030-35249-3_39
[2] Aliyeva K. R.: Fuzzy Optimal Control of Coke Production. Advances in Intelligent Systems and Computing 1306, 2021, 283–288 [https://doi.org/10.1007/978-3-030-64058-3_35]. DOI: https://doi.org/10.1007/978-3-030-64058-3_35
[3] Aliyeva K. R.: Fuzzy Type-2 Decision Making Method on Project Selection. Advances in Intelligent Systems and Computing 1323, 2021, 180–185 [https://doi.org/10.1007/978-3-030-68004-6_23]. DOI: https://doi.org/10.1007/978-3-030-68004-6_23
[4] Balezentiene L., Streimikiene D., Balezentis T.: Fuzzy decision support methodology for sustainable energy crop selection. Renewable and Sustainable Energy Reviews 17, 2013, 83–93 [http://dx.doi.org/10.1016/j.rser.2012.09.016]. DOI: https://doi.org/10.1016/j.rser.2012.09.016
[5] Cristóbal J. R. S.: Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renewable Energy 36, 2016, 498–502 [http://dx.doi.org/10.1016/j.renene.2010.07.031]. DOI: https://doi.org/10.1016/j.renene.2010.07.031
[6] Eyupoglu S. Z., Jabbarova K. I., Aliyeva K. R.: The identification of job satisfaction under Z-information. Intelligent Automation and Soft Computing 24(1), 2018, 159–164 [https://doi.org/10.1080/10798587.2017.1327156]. DOI: https://doi.org/10.1080/10798587.2017.1327156
[7] Hwang C. L., Yoon K.: Multiple Attribute Decision Making: Methods and Applications. Springer Science & Business Media 2017.
[8] Kaya T., Kahraman C.: Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy 35(6), 2010, 2517–2527 [https://doi.org/10.1016/j.energy.2010.02.051]. DOI: https://doi.org/10.1016/j.energy.2010.02.051
[9] Kaya T., Kahraman C.: Multi criteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Systems with Applications 38, 2011, 6577–6585 [http://dx.doi.org/10.1016/j.eswa.2010.11.081]. DOI: https://doi.org/10.1016/j.eswa.2010.11.081
[10] Kaygusuz K.: Environmental impacts of energy utilisation and renewable energy policies in Turkey. Energy Policy 30, 2002, 689–698 [http://dx.doi.org/10.1016/S0301-4215(02)00032-0]. DOI: https://doi.org/10.1016/S0301-4215(02)00032-0
[11] Pohekar S. D., Ramachandran M.: Application of multi-criteria decision making to sustainable energy planning. Renewable and Sustainable Energy Reviews 8, 2004, 365–381 [http://dx.doi.org/10.1016/j.rser.2003.12.007]. DOI: https://doi.org/10.1016/j.rser.2003.12.007
[12] Şengül U., et al.: Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy 75, 2015, 617–625 [https://doi.org/10.1016/j.renene.2014.10.045]. DOI: https://doi.org/10.1016/j.renene.2014.10.045
[13] Sharghi P., Jabbarova K. I., Aliyeva K. R.: Decision Making on an Optimal Port Choice under Z-information. Procedia Computer Science 102, 2016, 378–384 [https://doi.org/10.1016/j.procs.2016.09.415]. DOI: https://doi.org/10.1016/j.procs.2016.09.415
[14] Tasri A., Susilawati A.: Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustainable Energy Technologies and Assessments 7, 2014, 34–44 [https://doi.org/10.1016/j.seta.2014.02.008]. DOI: https://doi.org/10.1016/j.seta.2014.02.008
[15] Terrados J., et al.: Regional energy planning through SWOT analysis and strategic planning tools. Impact on renewable development. Renewable and Sustainable Energy Reviews 11, 2009, 1275–1287 [http://dx.doi.org/10.1016/j.rser.2005.08.003]. DOI: https://doi.org/10.1016/j.rser.2005.08.003
[16] Terrados J., et al.: Proposal for a combined methodology for renewable energy planning. Application to a Spanish region, Renewable and Sustainable Energy Reviews 13, 2009, 2022–2030 [http://dx.doi.org/10.1016/j.rser.2009.01.025]. DOI: https://doi.org/10.1016/j.rser.2009.01.025
[17] Tsoutsos T., et al.: Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy 37, 2009, 1587–1600 [http://dx.doi.org/10.1016/j.enpol.2008.12.011]. DOI: https://doi.org/10.1016/j.enpol.2008.12.011
[18] Wang Y., et al.: A Fuzzy VIKOR Approach for Renewable Energy Resources Selection in China. Revista de la Facultad de Ingeniería 31(10), 2016, 62–77 [http://dx.doi.org/10.21311/002.31.10.07]. DOI: https://doi.org/10.21311/002.31.10.07
[19] Wang J. J. et al.: Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 13, 2009, 2263–2278 [http://dx.doi.org/10.1016/j.rser.2009.06.021]. DOI: https://doi.org/10.1016/j.rser.2009.06.021
[20] Zadeh L. A.: Fuzzy sets. Information and Control 8(3), 1965, 338–353 [https://doi.org/10.1016/S0019-9958(65)90241-X]. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
[21] Zadeh L. A.: Fuzzy logic and decision-making. IEEE Transactions on Systems, Man, and Cybernetics 8(4), 1978, 28–44 [https://doi.org/10.1504/IJPQM.2017.10005237]. DOI: https://doi.org/10.1504/IJPQM.2017.10005237
Article Details
Abstract views: 219

