[1] Ali W., et al.: Classical and modern face recognition approaches: a complete review. Multimedia tools and applications 80, 2021, 4825–4880 [https://dx.doi.org/10.1007/s11042-020-09850-1].
DOI: https://doi.org/10.1007/s11042-020-09850-1
[2] Appati J. K., et al.: Analysis and implementation of optimization techniques for facial recognition. Applied Computational Intelligence and Soft Computing 2021, 2021, 6672578 [https://dx.doi.org/10.1155/2021/6672578].
DOI: https://doi.org/10.1155/2021/6672578
[3] Archana M. C. P., Nitish C. K., Harikumar S.: Real time face detection and optimal face mapping for online classes. Journal of Physics: Conference Series 2161(1), 2022 [https://dx.doi.org/10.1088/1742-6596/2161/1/012063].
DOI: https://doi.org/10.1088/1742-6596/2161/1/012063
[4] Chandra M. A., Bedi S. S.: Survey on SVM and their application in image classification. International Journal of Information Technology 13(5), 2021, 1–11 [https://doi.org/10.1007/s41870-017-0080-1].
DOI: https://doi.org/10.1007/s41870-017-0080-1
[5] Chen W., et al.: YOLO-face: a real-time face detector. The Visual Computer 37, 2021, 805–813 [https://dx.doi.org/10.1007/s00371-020-01831-7].
DOI: https://doi.org/10.1007/s00371-020-01831-7
[6] Chong W.-J. L., Chong S.-C., Ong T.-S.: Masked face recognition using histogram-based recurrent neural network. Journal of Imaging 9(2), 2023, 38 [https://dx.doi.org/10.3390/jimaging9020038].
DOI: https://doi.org/10.3390/jimaging9020038
[7] Coe J., Atay M.: Evaluating impact of race in facial recognition across machine learning and deep learning algorithms. Computers 10(9), 2021, 113 [https://doi.org/10.3390/computers10090113].
DOI: https://doi.org/10.3390/computers10090113
[8] Grudzień A., Kowalski M., Pałka N.: Thermal Face Verification through Identification. Sensors 21(9), 2021, 3301 [https://doi.org/10.3390/s21093301].
DOI: https://doi.org/10.3390/s21093301
[9] Gu M., Liu X., Feng J.: Classroom face detection algorithm based on improved MTCNN. Signal, Image and Video Processing 16(5), 2022, 1355–1362 [https://doi.org/10.1007/s11760-021-02087-x].
DOI: https://doi.org/10.1007/s11760-021-02087-x
[10] Hangaragi S., Singh T., N. N.: Face detection and Recognition using Face Mesh and deep neural network. Procedia Computer Science 218, 2023, 741–749 [https://dx.doi.org/10.1016/j.procs.2023.01.054].
DOI: https://doi.org/10.1016/j.procs.2023.01.054
[11] Heidari M., Fouladi-Ghaleh K.: Using siamese networks with transfer learning for face recognition on small-samples datasets. International Conference on Machine Vision and Image Processing – MVIP, 2020 [https://dx.doi.org/10.1109/MVIP49855.2020.9116915].
DOI: https://doi.org/10.1109/MVIP49855.2020.9116915
[12] Khan A. R., et al.: Face detection in close-up shot video events using video mining. Journal of Advances in Information Technology 14(2), 2023, 160–167 [https://dx.doi.org/10.12720/jait.14.2.160-167].
DOI: https://doi.org/10.12720/jait.14.2.160-167
[13] Kong S. G., et al.: Recent advances in visual and infrared face recognition – a review. Computer Vision and Image Understanding 97(1), 2005, 103–135 [https://dx.doi.org/10.1016/j.cviu.2004.04.001].
DOI: https://doi.org/10.1016/j.cviu.2004.04.001
[14] Kumar A., Kumar M., Kaur A.: Face detection in still images under occlusion and non-uniform illumination. Multimedia Tools and Applications 80, 2021, 14565–14590 [https://doi.org/10.1007/s11042-020-10457-9].
DOI: https://doi.org/10.1007/s11042-020-10457-9
[15] Lu P., Song B., Xu L.: Human face recognition based on convolutional neural network and augmented dataset. Systems Science & Control Engineering 9(2), 2021, 29–37 [https://doi.org/10.1080/21642583.2020.1836526].
DOI: https://doi.org/10.1080/21642583.2020.1836526
[16] Luo Y., et al.: ClawGAN: Claw connection-based generative adversarial networks for facial image translation in thermal to RGB visible light. Expert Systems with Applications 191, 2022, 116269 [https://dx.doi.org/10.1016/j.eswa.2021.116269].
DOI: https://doi.org/10.1016/j.eswa.2021.116269
[17] Mamieva D., et al.: Improved face detection method via learning small faces on hard images based on a deep learning approach. Sensors 23(1), 2023, 502 [https://doi.org/10.3390/s23010502]
DOI: https://doi.org/10.3390/s23010502
[18] Mandal B., Okeukwu A., Theis Y.: Masked face recognition using resnet-50. arXiv preprint arXiv:2104.08997, 2021 [https://doi.org/10.48550/arXiv.2104.08997].
[19] Minaee S., et al.: Going deeper into face detection: A survey. arXiv preprint arXiv:2103.14983, 2021 [https://doi.org/10.48550/arXiv.2103.14983].
[20] Ming Y., Qian H., Guangyuan L.: CNN‐LSTM Facial Expression Recognition Method Fused with Two‐Layer Attention Mechanism. Computational Intelligence and Neuroscience 2022, 2022, 7450637 [https://dx.doi.org/10.1155/2022/7450637].
DOI: https://doi.org/10.1155/2022/7450637
[21] Onyema E. M., et al.: Enhancement of patient facial recognition through deep learning algorithm: ConvNet. Journal of Healthcare Engineering 2021, 2021, 5196000 [https://dx.doi.org/10.1155/2021/5196000].
DOI: https://doi.org/10.1155/2021/5196000
[22] Schroff F., Kalenichenko D., Philbin J.: Facenet: A unified embedding for face recognition and clustering. IEEE Conference on Computer Vision and Pattern Recognition 2015, 815–823 [https://doi.org/10.1109/CVPR.2015.7298682].
DOI: https://doi.org/10.1109/CVPR.2015.7298682
[23] Shetty A. B., Rebeiro J.: Facial recognition using Haar cascade and LBP classifiers. Global Transitions Proceedings 2(2), 2021, 330–335 [https://doi.org/10.1016/j.gltp.2021.08.044].
DOI: https://doi.org/10.1016/j.gltp.2021.08.044
[24] Singh G., Goel A. K.: Face detection and recognition system using digital image processing. 2nd International Conference on Innovative Mechanisms for Industry Applications – ICIMIA, 2020 [https://dx.doi.org/10.1109/ICIMIA48430.2020.9074838].
DOI: https://doi.org/10.1109/ICIMIA48430.2020.9074838
[25] Surasak T., et al.: Histogram of oriented gradients for human detection in video. 5th International Conference on Business and Industrial Research – ICBIR, 2015, 172–176 [https://doi.org/10.1109/ICBIR.2018.8391187].
DOI: https://doi.org/10.1109/ICBIR.2018.8391187
[26] Wang M., Deng W.: Deep face recognition: A survey. Neurocomputing 429, 2021, 215–244 [https://doi.org/10.1109/SIBGRAPI.2018.00067].
DOI: https://doi.org/10.1016/j.neucom.2020.10.081
[27] Zeng W., et al.: A masked-face detection algorithm based on M EIOU loss and improved ConvNeXt. Expert Systems with Applications 225, 2023, 120037 [https://dx.doi.org/10.1016/j.eswa.2023.120037].
DOI: https://doi.org/10.1016/j.eswa.2023.120037