Face recognition in dense crowd using deep learning approaches with IP camera
Article Sidebar
Open full text
Issue Vol. 15 No. 2 (2025)
-
Fine-grained detection and segmentation of civilian aircraft in satellite imagery using YOLOv8
Ramesh Kumar Panneerselvam, Sarada Bandi, Sree Datta Siva Charan Doddapaneni5-12
-
Application of YOLO and U-Net models for building material identification on segmented images
Ruslan Voronkov, Mykhailo Bezuglyi13-17
-
Integrating genomics & AI for precision crop monitoring and adaptive stress management
Rajesh Polegopu, Satya Sumanth Vanapalli, Sashi Vardhan Vanapalli, Naga Prudvi Diyya, Mounika Vandila, Divya Valluri, Anjali Peddinti, Sowjanya Saladi, Meghana Pyla, Padmini Gelli18-26
-
Design and evaluation of a new tent-shaped transfer function using the Polar Lights Optimizer algorithm for feature selection
Zaynab Ayham Almishlih, Omar Saber Qasim, Zakariya Yahya Algamal27-31
-
Object detection algorithm in a navigation system for a rescue drone
Nataliia Stelmakh, Yurii Yukhymenko; Ilya Rudkovskiy; Anton Lavrinenkov32-36
-
An efficient omnidirectional image unwrapping approach
Said Bouhend, Chakib Mustapha Anouar Zouaoui, Adil Toumouh, Nasreddine Taleb37-43
-
Face recognition in dense crowd using deep learning approaches with IP camera
Sobhana Mummaneni, Venkata Chaitanya Satya Ramaraju Mudunuri, Sri Veerabhadra Vikas Bommaganti, Bhavya Vani Kalle, Novaline Jacob, Emmanuel Sanjay Raj Katari44-50
-
Analysis of selected methods of person identification based on biometric data
Marcin Rudzki, Paweł Powroźnik51-56
-
Diagnostic capabilities of Jones matrix theziogaphy of the multifractal structure of dehydrated blood films
Yuriy Ushenko, Iryna Soltys, Oleksandr Dubolazov, Sergii Pavlov, Victor Paliy, Marta Garazdiuk, Vasyl Garasym, Oleksandr Ushenko, Ainur Kozbakova57-60
-
Investigating the influence of boron diffusion temperature on the performance of n-type PERT monofacial solar cells with reduced thermal steps
Hakim Korichi, Mohamed Kezrane, Ahmed Baha-Eddine Bensdira61-64
-
Modeling of photoconverter parameters based on CdS/porous-CdTe/CdTe heterostructure
Alena F. Dyadenchuk, Roman I. Oleksenko65-69
-
Design and challenges of an autonomous ship alarm monitoring system for enhanced maritime safety
Oumaima Bouanani, Sara Sandabad, Abdelmoula Ait Allal, Moulay El Houssine Ech-Chhibat70-76
-
Substation digitalisation via GOOSE protocol between intelligent electronic devices
Laura Yesmakhanova, Samal Kulmanova, Dildash Uzbekova, Bibigul Issabekova77-83
-
Conceptual model of forming a proposal for providing communication to a unit using artificial intelligence
Dmytro Havrylov, Roman Lukianiuk, Albert Lekakh, Olexandr Musienko, Vladymyr Startsev, Gennady Pris, Kyrylo Рasynchuk84-89
-
Development of the analytical model and method of optimization of the priority service corporate computer "Elections" network
Zakir Nasib Huseynov90-93
-
Heterogeneous ensemble neural network for forecasting the state of multi-zone heating facilities
Maria Yukhimchuk, Volodymyr Dubovoi, Zhanna Harbar, Bakhyt Yeraliyeva94-99
-
Push-pull voltage buffer with improved load capacity
Oleksiy Azarov, Maxim Obertyukh, Mikhailo Prokofiev, Aliya Kalizhanova, Olena Kosaruk100-103
-
Estimation of renewable energy sources under uncertainty using fuzzy AHP method
Kamala Aliyeva104-109
-
Model of the electric network based on the fractal-cluster principle
Huthaifa A. Al_Issa, Artem Cherniuk, Yuliia Oliinyk, Oleksiy Iegorov, Olga Iegorova, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko110-117
-
Modeling dynamic and static operating modes of a low-power asynchronous electric drive
Viktor Lyshuk, Sergiy Moroz, Yosyp Selepyna, Valentyn Zablotskyi, Mykola Yevsiuk, Viktor Satsyk, Anatolii Tkachuk118-123
-
Development and optimization of the control device for the hydraulic drive of the belt conveyor
Leonid Polishchuk, Oleh Piontkevych, Artem Svietlov, Oksana Adler, Dmytro Lozinsky124-129
-
Optimization of fiber-optic sensor performance in space environments
Nurzhigit Smailov, Marat Orynbet, Aruzhan Nazarova, Zhadyger Torekhan, Sauletbek Koshkinbayev, Kydyrali Yssyraiyl, Rashida Kadyrova, Akezhan Sabibolda130-134
-
Analysis of VLC efficiency in optical wireless communication systems for indoor applications
Nurzhigit Smailov, Shakir Akmardin, Assem Ayapbergenova, Gulsum Ayapbergenova, Rashida Kadyrova, Akezhan Sabibolda135-138
-
Prediction of quality software quality indicators with applied modifications of integrated gradiates methods
Anton Shantyr, Olha Zinchenko, Kamila Storchak, Andrii Bondarchuk, Yuriy Pepa139-146
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
A facial recognition system is a biometric security and surveillance system that can identify and monitor individuals in a crowded area. Manually monitoring a crowded environment is a difficult and error-prone task. Therefore, in such contexts, a model that automatically detects and recognises people's faces is needed to improve security. The automation of face recognition brings the benefit of a more efficient and accurate solution. This paper proposes an advanced model that has the ability to detect and recognise faces in dense crowds by using deep learning techniques. Where the input is live video, the process involves splitting the video into frames and each frame is fed into the model. The Multi-Task Cascaded Convolutional Neural Networks (MTCNN) algorithm is used for face detection. It accurately locates faces in frames and images and generates boundaries around the faces as output. The detected faces are then fed as input to a model, where they are compared with data from the database. If a face is recognised, the name of the recognised person is displayed in the boundary box of the frame, otherwise it is displayed that the person is unknown. FaceNet is used for face recognition tasks.
Keywords:
References
[1] Ali W., et al.: Classical and modern face recognition approaches: a complete review. Multimedia tools and applications 80, 2021, 4825–4880 [https://dx.doi.org/10.1007/s11042-020-09850-1]. DOI: https://doi.org/10.1007/s11042-020-09850-1
[2] Appati J. K., et al.: Analysis and implementation of optimization techniques for facial recognition. Applied Computational Intelligence and Soft Computing 2021, 2021, 6672578 [https://dx.doi.org/10.1155/2021/6672578]. DOI: https://doi.org/10.1155/2021/6672578
[3] Archana M. C. P., Nitish C. K., Harikumar S.: Real time face detection and optimal face mapping for online classes. Journal of Physics: Conference Series 2161(1), 2022 [https://dx.doi.org/10.1088/1742-6596/2161/1/012063]. DOI: https://doi.org/10.1088/1742-6596/2161/1/012063
[4] Chandra M. A., Bedi S. S.: Survey on SVM and their application in image classification. International Journal of Information Technology 13(5), 2021, 1–11 [https://doi.org/10.1007/s41870-017-0080-1]. DOI: https://doi.org/10.1007/s41870-017-0080-1
[5] Chen W., et al.: YOLO-face: a real-time face detector. The Visual Computer 37, 2021, 805–813 [https://dx.doi.org/10.1007/s00371-020-01831-7]. DOI: https://doi.org/10.1007/s00371-020-01831-7
[6] Chong W.-J. L., Chong S.-C., Ong T.-S.: Masked face recognition using histogram-based recurrent neural network. Journal of Imaging 9(2), 2023, 38 [https://dx.doi.org/10.3390/jimaging9020038]. DOI: https://doi.org/10.3390/jimaging9020038
[7] Coe J., Atay M.: Evaluating impact of race in facial recognition across machine learning and deep learning algorithms. Computers 10(9), 2021, 113 [https://doi.org/10.3390/computers10090113]. DOI: https://doi.org/10.3390/computers10090113
[8] Grudzień A., Kowalski M., Pałka N.: Thermal Face Verification through Identification. Sensors 21(9), 2021, 3301 [https://doi.org/10.3390/s21093301]. DOI: https://doi.org/10.3390/s21093301
[9] Gu M., Liu X., Feng J.: Classroom face detection algorithm based on improved MTCNN. Signal, Image and Video Processing 16(5), 2022, 1355–1362 [https://doi.org/10.1007/s11760-021-02087-x]. DOI: https://doi.org/10.1007/s11760-021-02087-x
[10] Hangaragi S., Singh T., N. N.: Face detection and Recognition using Face Mesh and deep neural network. Procedia Computer Science 218, 2023, 741–749 [https://dx.doi.org/10.1016/j.procs.2023.01.054]. DOI: https://doi.org/10.1016/j.procs.2023.01.054
[11] Heidari M., Fouladi-Ghaleh K.: Using siamese networks with transfer learning for face recognition on small-samples datasets. International Conference on Machine Vision and Image Processing – MVIP, 2020 [https://dx.doi.org/10.1109/MVIP49855.2020.9116915]. DOI: https://doi.org/10.1109/MVIP49855.2020.9116915
[12] Khan A. R., et al.: Face detection in close-up shot video events using video mining. Journal of Advances in Information Technology 14(2), 2023, 160–167 [https://dx.doi.org/10.12720/jait.14.2.160-167]. DOI: https://doi.org/10.12720/jait.14.2.160-167
[13] Kong S. G., et al.: Recent advances in visual and infrared face recognition – a review. Computer Vision and Image Understanding 97(1), 2005, 103–135 [https://dx.doi.org/10.1016/j.cviu.2004.04.001]. DOI: https://doi.org/10.1016/j.cviu.2004.04.001
[14] Kumar A., Kumar M., Kaur A.: Face detection in still images under occlusion and non-uniform illumination. Multimedia Tools and Applications 80, 2021, 14565–14590 [https://doi.org/10.1007/s11042-020-10457-9]. DOI: https://doi.org/10.1007/s11042-020-10457-9
[15] Lu P., Song B., Xu L.: Human face recognition based on convolutional neural network and augmented dataset. Systems Science & Control Engineering 9(2), 2021, 29–37 [https://doi.org/10.1080/21642583.2020.1836526]. DOI: https://doi.org/10.1080/21642583.2020.1836526
[16] Luo Y., et al.: ClawGAN: Claw connection-based generative adversarial networks for facial image translation in thermal to RGB visible light. Expert Systems with Applications 191, 2022, 116269 [https://dx.doi.org/10.1016/j.eswa.2021.116269]. DOI: https://doi.org/10.1016/j.eswa.2021.116269
[17] Mamieva D., et al.: Improved face detection method via learning small faces on hard images based on a deep learning approach. Sensors 23(1), 2023, 502 [https://doi.org/10.3390/s23010502] DOI: https://doi.org/10.3390/s23010502
[18] Mandal B., Okeukwu A., Theis Y.: Masked face recognition using resnet-50. arXiv preprint arXiv:2104.08997, 2021 [https://doi.org/10.48550/arXiv.2104.08997].
[19] Minaee S., et al.: Going deeper into face detection: A survey. arXiv preprint arXiv:2103.14983, 2021 [https://doi.org/10.48550/arXiv.2103.14983].
[20] Ming Y., Qian H., Guangyuan L.: CNN‐LSTM Facial Expression Recognition Method Fused with Two‐Layer Attention Mechanism. Computational Intelligence and Neuroscience 2022, 2022, 7450637 [https://dx.doi.org/10.1155/2022/7450637]. DOI: https://doi.org/10.1155/2022/7450637
[21] Onyema E. M., et al.: Enhancement of patient facial recognition through deep learning algorithm: ConvNet. Journal of Healthcare Engineering 2021, 2021, 5196000 [https://dx.doi.org/10.1155/2021/5196000]. DOI: https://doi.org/10.1155/2021/5196000
[22] Schroff F., Kalenichenko D., Philbin J.: Facenet: A unified embedding for face recognition and clustering. IEEE Conference on Computer Vision and Pattern Recognition 2015, 815–823 [https://doi.org/10.1109/CVPR.2015.7298682]. DOI: https://doi.org/10.1109/CVPR.2015.7298682
[23] Shetty A. B., Rebeiro J.: Facial recognition using Haar cascade and LBP classifiers. Global Transitions Proceedings 2(2), 2021, 330–335 [https://doi.org/10.1016/j.gltp.2021.08.044]. DOI: https://doi.org/10.1016/j.gltp.2021.08.044
[24] Singh G., Goel A. K.: Face detection and recognition system using digital image processing. 2nd International Conference on Innovative Mechanisms for Industry Applications – ICIMIA, 2020 [https://dx.doi.org/10.1109/ICIMIA48430.2020.9074838]. DOI: https://doi.org/10.1109/ICIMIA48430.2020.9074838
[25] Surasak T., et al.: Histogram of oriented gradients for human detection in video. 5th International Conference on Business and Industrial Research – ICBIR, 2015, 172–176 [https://doi.org/10.1109/ICBIR.2018.8391187]. DOI: https://doi.org/10.1109/ICBIR.2018.8391187
[26] Wang M., Deng W.: Deep face recognition: A survey. Neurocomputing 429, 2021, 215–244 [https://doi.org/10.1109/SIBGRAPI.2018.00067]. DOI: https://doi.org/10.1016/j.neucom.2020.10.081
[27] Zeng W., et al.: A masked-face detection algorithm based on M EIOU loss and improved ConvNeXt. Expert Systems with Applications 225, 2023, 120037 [https://dx.doi.org/10.1016/j.eswa.2023.120037]. DOI: https://doi.org/10.1016/j.eswa.2023.120037
Article Details
Abstract views: 321

